Abstract
The adsorptive removal properties of synthetic A4 zeolite were investigated against a total of 16 offensive odors consisting of reduced sulfur compounds (RSCs), nitrogenous compounds (NCs), volatile fatty acids (VFAs), and phenols/indoles (PnI). Removal of these odors was measured using a laboratory-scale impinger-based adsorption setup containing 25 g of the zeolite bed (flow rate of 100 mL min-1). The high est and lowest breakthrough (%) values were shown for PnIs and RSCs, respectively, and the maximum and minimum adsorption capacity (μg g-1) of the zeolite was observed for the RSCs (range of 0.77-3.4) and PnIs (0.06-0.104), respectively. As a result of sorptive removal by zeolite, a reduction in odor strength, measured as odor intensity (OI), was recorded from the minimum of approximately 0.7 OI units (indole [from 2.4 to 1.6]), skatole [2.2 to 1.4], and p-cresol [5.1 to 4.4]) to the maximum of approximately 4 OI units (methanethiol [11.4 to 7.5], n-valeric acid [10.4 to 6.5], i-butyric acid [7.9 to 4.4], and propionic acid [7.2 to 3.7]). Likewise, when removal was examined in terms of odor activity value (OAV), the extent of reduction was significant (i.e., 1000-fold) in the increasing order of amy acetate, ibutyric acid, phenol, propionic acid, and ammonia.
Author supplied keywords
Cite
CITATION STYLE
Adelodun, A. A., Vellingiri, K., Jeon, B. H., Oh, J. M., Kumar, S., & Kim, K. H. (2017). A test of relative removal properties of various offensive odors by zeolite. Asian Journal of Atmospheric Environment, 11(1), 15–28. https://doi.org/10.5572/ajae.2017.11.1.015
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.