Abstract
We previously documented that the CaV3.3 isoform of T-type calcium channels (T-channels) is inhibited by clinically relevant concentrations of volatile anaesthetics, including isoflurane. However, little is understood about the functional role of CaV3.3 channels in anaesthetic-induced hypnosis and underlying neuronal oscillations. To address this issue, we used CaV3.3 knock-out (KO) mice and a panselective T-channel blocker 3,5-dichloro-N-[1-(2,2-dimethyltetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2). We found that mutant mice injected with the vehicle showed faster induction of hypnosis than wild-type (WT) mice, while the percent isoflurane at which hypnosis and immobility occurred was not different between two genotypes. Furthermore, we found that TTA-P2 facilitated isoflurane induction of hypnosis in the CaV3.3 KO mice more robustly than in the WT mice. Isoflurane-induced hypnosis following injections of TTA-P2 was accompanied with more prominent delta and theta EEG oscillations in the mutant mice, and reached burst-suppression pattern earlier when compared to the WT mice. Our findings point to a relatively specific value of CaV3.3 channels in anaesthetic induced hypnosis. Furthermore, we propose that T-channel blockers may be further explored as a valuable adjunct to reducing the usage of potent volatile anaesthetics, thereby improving their safety.
Cite
CITATION STYLE
Feseha, S., Timic Stamenic, T., Wallace, D., Tamag, C., Yang, L., Pan, J. Q., & Todorovic, S. M. (2020). Global genetic deletion of CaV3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78488-8
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.