Gas-Phase FRET Efficiency Measurements to Probe the Conformation of Mass-Selected Proteins

58Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Electrospray ionization and mass spectrometry have revolutionized the chemical analysis of biological molecules, including proteins. However, the correspondence between a protein's native structure and its structure in the mass spectrometer (where it is gaseous) remains unclear. Here, we show that fluorescence (Förster) resonance energy transfer (FRET) measurements combined with mass spectrometry provides intramolecular distance constraints in gaseous, ionized proteins. Using an experimental setup which combines trapping mass spectrometry and laser-induced fluorescence spectroscopy, the structure of a fluorescently labeled mutant variant of the protein GB1 was probed as a function of charge state. Steady-state fluorescence emission spectra and time-resolved donor fluorescence measurements of mass-selected GB1 show a marked decrease in the FRET efficiency with increasing number of charges on the gaseous protein, which suggests a Coulombically driven unfolding and expansion of its structure. This lies in stark contrast to the pH stability of GB1 in solution. Comparison with solution-phase single-molecule FRET measurements show lower FRET efficiency for all charge states of the gaseous protein examined, indicating that the ensemble of conformations present in the gas phase is, on average, more expanded than the native form. These results represent the first FRET measurements on a mass-selected protein and illustrate the utility of FRET for obtaining a new kind of structural information for large, desolvated biomolecules. (Figure Presented).

Cite

CITATION STYLE

APA

Czar, M. F., Zosel, F., König, I., Nettels, D., Wunderlich, B., Schuler, B., … Jockusch, R. A. (2015). Gas-Phase FRET Efficiency Measurements to Probe the Conformation of Mass-Selected Proteins. Analytical Chemistry, 87(15), 7559–7565. https://doi.org/10.1021/acs.analchem.5b01591

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free