Modelling of transcritical and supercritical nitrogen jets

  • ANTUNES E
  • SILVA A
  • BARATA J
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The present paper addresses the modelling of fuel injection at conditions of high pressure and temperature which occur in a variety of internal combustion engines such as liquid fuel rocket engines, gas turbines, and modern diesel engines. For this investigation a cryogenic nitrogen jet ranging from transcritical to supercritical conditions injected into a chamber at supercritical conditions was modelled. Previously a variable density approach, originally conceived for gaseous turbulent isothermal jets, imploying the Favre averaged Navier-Stokes equations together with a “k-ε” turbulence model, and using Amagats law for the determination of density was applied. This approach allows a good agreement with experiments mainly at supercritical injection conditions. However, some departure from experimental data was found at transcritical injection conditions. The present approach adds real fluid thermodynamics to the previous approach, and the effects of heat transfer. The results still show some disagreement at supercritical conditions mainly in the determination of the potential core length but significantly improve the prediction of the jet spreading angle at transcritical injection conditions.

Cite

CITATION STYLE

APA

ANTUNES, E., SILVA, A., & BARATA, J. (2017). Modelling of transcritical and supercritical nitrogen jets. Combustion Engines, 169(2), 125–132. https://doi.org/10.19206/ce-2017-222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free