Automatic diagnosis of ocular toxoplasmosis from fundus images with residual neural networks

12Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Ocular toxoplasmosis (OT) is commonly diagnosed through the analysis of fundus images of the eye by a specialist. Despite Deep Learning being widely used to process and recognize pathologies in medical images, the diagnosis of ocular toxoplasmosis(OT) has not yet received much attention. A predictive computational model is a valuable time-saving option if used as a support tool for the diagnosis of OT. It could also help diagnose atypical cases, being particularly useful for ophthalmologists who have less experience. In this work, we propose the use of a deep learning model to perform automatic diagnosis of ocular toxoplasmosis from images of the eye fundus. A pretrained residual neural network is fine-tuned on a dataset of samples collected at the medical center of Hospital de Clínicas in Asunción, Paraguay. With sensitivity and specificity rates equal to 94% and 93%,respectively, the results show that the proposed model is highly promising. In order to replicate the results and advance further in this area of research, an open data set of images of the eye fundus labeled by ophthalmologists is made available. © 2021 European Federation for Medical Informatics (EFMI) and IOS Press.

Cite

CITATION STYLE

APA

Parra, R., Ojeda, V., Noguera, J. L. V., Torres, M. G., Román, J. C. M., Villalba, C., … Matto, I. C. (2021). Automatic diagnosis of ocular toxoplasmosis from fundus images with residual neural networks. In Public Health and Informatics: Proceedings of MIE 2021 (pp. 173–177). IOS Press. https://doi.org/10.3233/SHTI210143

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free