An experimental study on the effects of winglets on the tip vortex interaction in the near wake of a model wind turbine

28Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight-cut wing tip and a downstream-facing winglet shape are compared on the same two-bladed rotor operated at its design tip speed ratio. Phase-averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time-averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase-averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.

Author supplied keywords

Cite

CITATION STYLE

APA

Mühle, F., Bartl, J., Hansen, T., Adaramola, M. S., & Sætran, L. (2020). An experimental study on the effects of winglets on the tip vortex interaction in the near wake of a model wind turbine. Wind Energy, 23(5), 1286–1300. https://doi.org/10.1002/we.2486

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free