Abstract
The effect of aerosolised adrenomedullin (ADM), a potent vasodilator peptide, on pulmonary artery pressure was studied for 24 h in a surfactant-depleted piglet model. Animals received either aerosolised ADM (50 ng·kg-1·min-1, ADM, n=6), or aerosolised normal saline solution (control, n=6). Aerosol therapy was performed for a 2 h treatment period followed by a 22 h observation period. Ventilator settings were adapted to keep arterial oxygen tension and carbon dioxide arterial tension between 13.3-14.6 kPa and 4.9-5.7 kPa, respectively. Aerosolised ADM reduced mean pulmonary artery pressure (MPAP) compared with the control group (end-point median 24 h after therapy start: ΔMPAP -14.0 versus -8.0 mmHg; 23.5 h after therapy start). After therapy start, mean systemic arterial pressure (MAP) was not significantly different between the groups (end-point median: MAP ADM 70 (61/74) versus control 72 (54/81) mmHg). Endothelin-1, a potent pulmonary vasoconstrictor, is regulated by ADM via cAMP. Twenty two hours after inhalation of aerosolised ADM, endothelin-1 mRNA in lung tissue and endothelin-1 protein expression in pulmonary arteries was reduced compared with controls (median semi-quantitative immunhistochemical score: ADM 0.21, control 0.76). Aerosolised adrenomedullin significantly reduced mean pulmonary artery pressure independently of arterial oxygen tension. © ERS Journals Ltd 2004.
Author supplied keywords
Cite
CITATION STYLE
von der Hardt, K., Kandler, M. A., Chada, M., Cubra, A., Schoof, E., Amann, K., … Dötsch, J. (2004). Brief adrenomedullin inhalation leads to sustained reduction of pulmonary artery pressure. European Respiratory Journal, 24(4), 615–623. https://doi.org/10.1183/09031936.04.00016103
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.