Nanomaterials in liquid crystals as Ion-generating and ion-capturing objects

31Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The majority of tunable liquid crystal devices are driven by electric fields. The performance of such devices can be altered by the presence of small amounts of ions in liquid crystals. Therefore, the understanding of possible sources of ions in liquid crystal materials is very critical to a broad range of existing and future applications employing liquid crystals. Recently, nanomaterials in liquid crystals have emerged as a hot research topic, promising for its implementation in the design of wearable and tunable liquid crystal devices. An analysis of published results revealed that nanodopants in liquid crystals can act as either ion-capturing agents or ion-generating objects. In this paper, a recently developed model of contaminated nanomaterials in liquid crystals is analyzed. Nanoparticle-enabled ion capturing and ion generation regimes in liquid crystals are discussed within the framework of the proposed model. This model is in very good agreement with existing experimental results. Practical implications and future research directions are also discussed.

Cite

CITATION STYLE

APA

Garbovskiy, Y. (2018, July 1). Nanomaterials in liquid crystals as Ion-generating and ion-capturing objects. Crystals. MDPI AG. https://doi.org/10.3390/cryst8070264

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free