Mechanical and metabolic stimuli within contracting skeletal muscles reflexly increase sympathetic nervous system activity and blood pressure. That reflex, termed the exercise pressor reflex, is exaggerated in patients with peripheral artery disease (PAD) and in a rat PAD model with a chronically ligated femoral artery. The cyclooxygenase (COX) pathway contributes to the exaggerated pressor response during rhythmic skeletal muscle contractions in patients with PAD, but the specific mechanism(s) of the COX-mediated exaggeration are not known. In decerebrate, unanesthetized rats with a chronically ligated femoral artery (“ligated” rats), we hypothesized that hindlimb arterial injection of the COX inhibitor indomethacin would reduce the pressor response during 1-Hz dynamic hindlimb skeletal muscle stretch; a model of the activation of the mechanical component of the exercise pressor reflex (i.e., the mechanoreflex). In ligated rats (n = 7), indomethacin reduced the pressor response during stretch (control: 30 ± 4; indomethacin: 12 ± 3 mmHg; P < 0.01), whereas there was no effect in rats with “freely perfused” femoral arteries (n = 6, control: 18 ± 5; indomethacin: 17 ± 5 mmHg; P = 0.87). In ligated rats (n = 4), systemic indomethacin injection had no effect on the pressor response during stretch. Femoral artery ligation had no effect on skeletal muscle COX protein expression or activity or concentration of the COX metabolite prostaglandin E2. Conversely, femoral artery ligation increased expression of the COX metabolite receptors endoperoxide 4 and thromboxane A2-R in dorsal root ganglia tissue. We conclude that, in ligated rats, the COX pathway sensitizes the peripheral endings of mechanoreflex afferents, which occurs principally as a result of increased expression of COX metabolite receptors. NEW & NOTEWORTHY We demonstrate that the mechanoreflex is sensitized by the cyclooxygenase (COX) pathway within hindlimb skeletal muscles in the rat chronic femoral artery ligation model of simulated peripheral artery disease (PAD). The mechanism of sensitization appears attributable to increased receptors for COX metabolites on sensory neurons and not increased concentration of COX metabolites. Our data may carry important clinical implications for patients with PAD who demonstrate exaggerated increases in blood pressure during exercise compared with healthy counterparts.
CITATION STYLE
Butenas, A. L. E., Hopkins, T. D., Rollins, K. S., Felice, K. P., & Copp, S. W. (2019). Investigation of the mechanisms of cyclooxygenase-mediated mechanoreflex sensitization in a rat model of simulated peripheral artery disease. American Journal of Physiology - Heart and Circulatory Physiology, 317(5), H1050–H1061. https://doi.org/10.1152/AJPHEART.00399.2019
Mendeley helps you to discover research relevant for your work.