Abstract
Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy volunteers because of cutaneous nonenzymatic NO formation. Methods and Results: As detected by chemoluminescence detection or by electron paramagnetic resonance spectroscopy in vitro with human skin specimens, UVA illumination (25 J/cm2) significantly increased the intradermal levels of free NO. In addition, UVA enhanced dermal S-nitrosothiols 2.3-fold, and the subfraction of dermal S-nitrosoalbumin 2.9-fold. In vivo, in healthy volunteers creamed with a skin cream containing isotopically labeled 15N-nitrite, whole body UVA irradiation (20 J/cm2) induced significant levels of 15N-labeled S-nitrosothiols in the blood plasma of light exposed subjects, as detected by cavity leak out spectroscopy. Furthermore, whole body UVA irradiation caused a rapid, significant decrease, lasting up to 60 minutes, in systolic and diastolic blood pressure of healthy volunteers by 11±2% at 30 minutes after UVA exposure. The decrease in blood pressure strongly correlated (R2=0.74) with enhanced plasma concentration of nitrosated species, as detected by a chemiluminescence assay, with increased forearm blood flow (+26±7%), with increased flow mediated vasodilation of the brachial artery (+68±22%), and with decreased forearm vascular resistance (-28±7%). Conclusions: UVA irradiation of human skin caused a significant drop in blood pressure even at moderate UVA doses. The effects were attributed to UVA induced release of NO from cutaneous photolabile NO derivates. © 2009 American Heart Association, Inc.
Author supplied keywords
Cite
CITATION STYLE
Opländer, C., Volkmar, C. M., Paunel-Görgülü, A., Van Faassen, E. E., Heiss, C., Kelm, M., … Suschek, C. V. (2009). Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circulation Research, 105(10), 1031–1040. https://doi.org/10.1161/CIRCRESAHA.109.207019
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.