Hypoxia, a strong inducer for vascular endothelial growth factor (VEGF)/vascular permeable factor (VPF) expression, regulates leukocyte infiltration through the up-regulation of adhesion molecules and chemokine release. To determine whether VEGF/VPF is directly involved in chemokine secretion, we analyzed its effects on chemokine expression in human brain microvascular endothelial cells (HBMECs) by using a human cytokine cDNA array kit. Cytokine array analysis revealed a significant increase in expression of monocyte chemoattractant protein-1 and the chemokine receptor CXCR4 in HBMECs, a result similar to that described previously in other endothelial cells. Interestingly, we also observed that VEGF/VPF induced interleukin-8 (IL-8) expression in HBMECs and that IL-8 mRNA was maximal after 1 h of VEGF/VPF treatment of the cells. Enzyme-linked immunosorbent assay data and immunoprecipitation analysis revealed that although VEGF/VPF induced IL-8 expression at the translational level in HBMECs, basic fibroblast growth factor failed to induce this protein expression within 12 h. VEGF/VPF increased IL-8 production in HBMECs through activation of nuclear factor-KB via calcium and phosphatidylinositol 3-kinase pathways, whereas the ERK pathway was not involved in this process. Supernatants of the VEGF/VPF-treated HBMECs significantly increased neutrophil migration across the HBMEC monolayer compared with those of the untreated control. Furthermore, addition of anti-IL-8 antibody blocked this increased migration, indicating that VEGF/VPF induced the functional expression of IL-8 protein in HBMECs. Taken together, these data demonstrate for the first time that VEGF/VPF induces IL-8 expression in HBMECs and contributes to leukocyte infiltration through the expression of chemokines, such as IL-8, in endothelial cells.
CITATION STYLE
Lee, T. H., Avraham, H., Lee, S. H., & Avraham, S. (2002). Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. Journal of Biological Chemistry, 277(12), 10445–10451. https://doi.org/10.1074/jbc.M107348200
Mendeley helps you to discover research relevant for your work.