Abstract
The diapycnal diffusivity of mass supported by turbulent events in the ocean interior plays a fundamental role in controlling the global overturning circulation. The conventional representation of this diffusivity, due to Osborn (1980), assumes a constant mixing efficiency. We replace this methodology by a generalized-Osborn formula which involves a mixing efficiency that varies nonmonotonically with at least two nondimensional variables. Using these two variables, we propose dynamic parameterizations for mixing efficiency and turbulent Prandtl number (the latter quantifies the ratio of momentum to mass diapycnal diffusivities) based on the first synthesis of an extensive direct numerical simulation of inhomogeneously stratified shear-induced turbulence. Data from Argo floats are employed to demonstrate the extent of the spatial and statistical variability to be expected in both the diapycnal diffusivities of mass and momentum. We therefore suggest that previous estimates of these important characteristics of the global ocean require reconsideration.
Author supplied keywords
Cite
CITATION STYLE
Salehipour, H., Peltier, W. R., Whalen, C. B., & MacKinnon, J. A. (2016). A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophysical Research Letters, 43(7), 3370–3379. https://doi.org/10.1002/2016GL068184
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.