Abstract
The tumor suppressor p53 protein plays a crucial role in many biological processes. The presence of abnormal concentrations of wild-type p53, or some of its mutants, can be indicative of a pathological cancer state. p53 represents therefore a valuable biomarker for tumor screening approaches and development of suitable biosensors for its detection deserves a high interest in early diagnostics. Here, we revisit our experimental approaches, combining Surface Enhanced Raman Spectroscopy (SERS) and nanotechnological materials, for ultrasensitive detection of wild-type and mutated p53, in the perspective to develop biosensors to be used in clinical diagnostics. The Raman marker is provided by a small molecule (4-ATP) acting as a bridge between gold nanoparticles (NPs) and a protein biomolecule. The Azurin copper protein and specific antibodies of p53 were used as a capture element for p53 (wild-type and its mutants). The developed approaches allowed us to reach a detection level of p53 down to 10−17 M in both buffer and serum. The implementation of the method in a biosensor device, together with some possible developments are discussed.
Author supplied keywords
Cite
CITATION STYLE
Bizzarri, A. R., & Cannistraro, S. (2020, December 2). Toward cancer diagnostics of the tumor suppressor p53 by surface enhanced raman spectroscopy. Sensors (Switzerland). MDPI AG. https://doi.org/10.3390/s20247153
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.