Abstract
The aim of the study was to evaluate the adherence potential of indigenous probiotic bacteria and to improve the gastrointestinal survival of these cultures by adopting the double microencapsulation technique. The mean with standard deviation of triplicate experiments for the cell surface hydrophobicity, aggregation, and Cell adhesion evaluation of indigenous probiotics revealed that there was no significant difference in the hydrophobicity of both solvents (n-hexadecane and Xylene). A mixed trend was observed in the estimation for hydrophobicity; the indigenous Lactobacillus acidophilus was found with highest cell surface hydrophobicity (56.3%) and the lowest was found in Lactobacillus reuteri (28.1%). The Ca-alginate and prebiotics amalgum was used in double treatment and compared with control (free) and single encapsulated (Ca-alginate) cells in the stimulated gastric juice (SGJ) and stimulated intestinal juice (SIJ). The one-way analysis of variance (ANOVA) results show that the double microencapsulation technique has significant effects (P< 0.05) on the survival of bacterial cells during 6 weeks storage. A negligible reduction was found on day 42 in case of double microencapsulated cells as compared to significant adverse effects on the free cell. The loss was higher in single microencapsulated Lactobacillus plantarum and Lactobacillus paracasei and zero loss for Lactobacillus delbrueckii subsp. Bulgaricus. While a slight revival was observed in the free and single encapsulated bacteria in SIJ. Thus, combination of Ca-alginate and prebiotics significantly improves the viability and stress response of probiotics in the harsh GI conditions.
Cite
CITATION STYLE
Ammara, H., M., N. C., & Barbara, R. (2014). Microencapsulation, survival and adherence studies of indigenous probiotics. African Journal of Microbiology Research, 8(8), 766–775. https://doi.org/10.5897/ajmr2013.6182
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.