The nuclear DICER-circular RNA complex drives the deregulation of the glioblastoma cell microRNAome

34Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The assortment of cellular microRNAs ("microRNAome") is a vital readout of cellular homeostasis, but the mechanisms that regulate the microRNAome are poorly understood. The microRNAome of glioblastoma is substantially down-regulated in comparison to the normal brain. Here, we find malfunction of the posttranscriptional maturation of the glioblastoma microRNAome and link it to aberrant nuclear localization of DICER, the major enzymatic complex responsible for microRNA maturation. Analysis of DICER's nuclear interactome reveals the presence of an RNA binding protein, RBM3, and of a circular RNA, circ2082, within the complex. Targeting of this complex by knockdown of circ2082 results in the restoration of cytosolic localization of DICER and widespread derepression of the microRNAome, leading to transcriptome-wide rearrangements that mitigate the tumorigenicity of glioblastoma cells in vitro and in vivo with correlation to favorable outcomes in patients with glioblastoma. These findings uncover the mechanistic foundation of microRNAome deregulation in malignant cells.

Cite

CITATION STYLE

APA

Bronisz, A., Rooj, A. K., Krawczynski, K., Peruzzi, P., Salinska, E., Nakano, I., … Godlewski, J. (2020). The nuclear DICER-circular RNA complex drives the deregulation of the glioblastoma cell microRNAome. Science Advances, 6(51). https://doi.org/10.1126/sciadv.abc0221

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free