Image recognition with occlusion is one of the popular problems in pattern recognition. This paper partitions the images into some modules in two layers and the sparsity difference is used to evaluate the occluded modules. The final identification is processed on the unoccluded modules by sparse representation. Firstly, we partition the images into four blocks and sparse representation is performed on each block, so the sparsity of each block can be obtained; secondly, each block is partitioned again into two modules. Sparsity of each small module is calculated as the first step. Finally, the sparsity difference of small module with the corresponding block is used to detect the occluded modules; in this paper, the small modules with negative sparsity differences are considered as occluded modules. The identification is performed on the selected unoccluded modules by sparse representation. Experiments on the AR and Yale B database verify the robustness and effectiveness of the proposed method.
CITATION STYLE
Zhao, S., & Hu, Z. (2014). Occluded Face Recognition Based on Double Layers Module Sparsity Difference. Advances in Electronics, 2014, 1–6. https://doi.org/10.1155/2014/687827
Mendeley helps you to discover research relevant for your work.