A comparative study between kriging and adaptive sparse tensor-product methods for multi-dimensional approximation problems in aerodynamics design

  • Chkifa A
  • Cohen A
  • Passaggia P
  • et al.
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The performances of two interpolation procedures in high dimension are compared using functions that are either synthetic or coming from a shape optimization problem in aerodynamics. The aim is to evaluate the efficiency of adaptive sparse interpolation algorithms [2] and compare them with the kriging approach developed for the design and analysis of computer experiment (DACE) [21]. The accuracy and computational time of the two methods are examined as the number N of samples used in the interpolation increases. It appears in our test cases that both methods perform equivalently, in terms of precision. However, as the dimension d increases, the computational time involved in the enrichement of the kriging sample becomes intractable for large values of N . This problem is circumvented in the case of the sparse interpolation procedure for which the computational time scales linearly with N and d. Résumé. Nous comparons les performances de deux méthodes d'interpolation en grande dimen-sion, aussi bien sur des fonctions synthétiques que pour celles issues d'unprobì eme d'optimisation de forme en aerodynamique. L'objectif est d evaluer l' efficacité d ' algorithmes adaptatifs d ' interpolation parcimonieuse [ 2 ] , et de les comparer avec l ' approche du kriging développée dans le cadre design and analysis of computer experiment (DACE) [ 21 ]. La précision et le temps de calcul des deux méthodes son etudiées lorsque le nombre N d echantillons utilisés pour l ' interpolation augmente . Les cas tests montrent que les deux méthodes sont comparables en terme de précision . Cependant , lorsque la dimen - sion d augmente , le temps de calcul associ a l ' enrichissement de l echantillon pour le kriging devient prohibitif pour les grandes valeurs de N . Ce probì eme est contourné dans le cas de l ' interpolation parcimonieuse pour lequel le temps de calcul est linéaire en N et d .

Cite

CITATION STYLE

APA

Chkifa, A., Cohen, A., Passaggia, P.-Y., & Peter, J. (2015). A comparative study between kriging and adaptive sparse tensor-product methods for multi-dimensional approximation problems in aerodynamics design. ESAIM: Proceedings and Surveys, 48, 248–261. https://doi.org/10.1051/proc/201448011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free