Developing low-enthalpy geothermal resources along the US Gulf Coast is attractive for reducing global warming and providing clean energy. In this work, synthetic yet representative models for typical geopressured geothermal reservoirs located along the US Gulf Coast are considered. A Box–Behnken experimental design is used to select a small set of these models to perform detailed reservoir simulation runs. Full quadratic linear models are fit to the simulation results, and their sufficiency is confirmed by comparing them to kriging response surfaces. To achieve a higher degree of efficiency in using the response surfaces, Hammersley sequence sampling (HSS) method is used instead of traditional Monte Carlo sampling. HSS ensures that the factor space is sampled more uniformly and the response distribution is converged in less time. By evaluating these proxy models in the sampled factor space, the sensitivity and uncertainty of the response to the factors can be assessed. In this work, the sensitivity and uncertainty of engineered convection is assessed. For quantifying engineered convection, five uncertain reservoir attributes were selected. The response was defined as the net extracted enthalpy. In particular, two different designs for harvesting energy from geothermal reservoirs were compared using the response surfaces. In the modeled systems, results show that the regular design is more effective than the reverse design for extracting energy from geopressured geothermal reservoirs.
CITATION STYLE
Ansari, E., & Hughes, R. (2016). Response surface method for assessing energy production from geopressured geothermal reservoirs. Geothermal Energy, 4(1). https://doi.org/10.1186/s40517-016-0057-5
Mendeley helps you to discover research relevant for your work.