A control structure for ambidextrous robot arm based on Multiple Adaptive Neuro-Fuzzy Inference System

7Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

This paper presents the novel design of an ambidextrous robot arm that offers double range of motion as compared to dexterous arms. The arm is unique in terms of design (ambidextrous feature), actuation (use of two different actuators simultaneously: Pneumatic Artificial Muscle (PAM) and Electric Motors)) and control (combined use of Proportional Integral Derivative (PID) with Neural Network (NN) and Multiple Adaptive Neuro-fuzzy Inference System (MANFIS) controller with selector block). In terms of ambidextrous robot arm control, a solution based on forward kinematic and inverse kinematic approach is presented, and results are verified using the derived equation in MATLAB. Since solving inverse kinematics analytically is difficult, Adaptive Neuro Fuzzy Inference system (ANFIS) is developed using ANFIS MATLAB toolbox. When generic ANFIS failed to produce satisfactory results due to ambidextrous feature of the arm, MANFIS with a selector block is proposed. The efficiency of the ambidextrous arm has been tested by comparing its performance with a conventional robot arm. The results obtained from experiments proved the efficiency of the ambidextrous arm when compared with conventional arm in terms of power consumption and stability.

Cite

CITATION STYLE

APA

Mukhtar, M., Khudher, D., & Kalganova, T. (2021). A control structure for ambidextrous robot arm based on Multiple Adaptive Neuro-Fuzzy Inference System. IET Control Theory and Applications, 15(11), 1518–1532. https://doi.org/10.1049/cth2.12140

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free