Abstract
The introduction of the partial information decomposition generated a flurry of proposals for defining an intersection information that quantifies how much of "the same information" two or more random variables specify about a target random variable. As of yet, none is wholly satisfactory. A palatable measure of intersection information would provide a principled way to quantify slippery concepts, such as synergy. Here, we introduce an intersection information measure based on the Gács-Körner common random variable that is the first to satisfy the coveted target monotonicity property. Our measure is imperfect, too, and we suggest directions for improvement. © 2014 by the authors.
Author supplied keywords
Cite
CITATION STYLE
Griffith, V., Chong, E. K. P., James, R. G., Ellison, C. J., & Crutchfield, J. P. (2014). Intersection information based on common randomness. Entropy, 16(4), 1985–2000. https://doi.org/10.3390/e16041985
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.