Deep embedding features for salient object detection

34Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Benefiting from the rapid development of Convolutional Neural Networks (CNNs), some salient object detection methods have achieved remarkable results by utilizing multi-level convolutional features. However, the saliency training datasets is of limited scale due to the high cost of pixel-level labeling, which leads to a limited generalization of the trained model on new scenarios during testing. Besides, some FCN-based methods directly integrate multi-level features, ignoring the fact that the noise in some features are harmful to saliency detection. In this paper, we propose a novel approach that transforms prior information into an embedding space to select attentive features and filter out outliers for salient object detection. Our network firstly generates a coarse prediction map through an encorder-decorder structure. Then a Feature Embedding Network (FEN) is trained to embed each pixel of the coarse map into a metric space, which incorporates much attentive features that highlight salient regions and suppress the response of non-salient regions. Further, the embedded features are refined through a deep-to-shallow Recursive Feature Integration Network (RFIN) to improve the details of prediction maps. Moreover, to alleviate the blurred boundaries, we propose a Guided Filter Refinement Network (GFRN) to jointly optimize the predicted results and the learnable guidance maps. Extensive experiments on five benchmark datasets demonstrate that our method outperforms state-of-the-art results. Our proposed method is end-to-end and achieves a real-time speed of 38 FPS.

Cite

CITATION STYLE

APA

Zhuge, Y., Zeng, Y., & Lu, H. (2019). Deep embedding features for salient object detection. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 9340–9347). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33019340

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free