Last decade has witnessed an increasing effort on modelling and simulation of phenomena within a wide range of areas such as Biochemistry, Ecology, Robotics or Engineering by using membrane computing, providing solutions for relevant problems (signalling pathways, population dynamics, robot control or fault diagnosis, among others). However, for no apparent reasons, other areas have not been investigated to such extent. This is the case of computational economics, where Gh. and R. Păun explored the so-called producer–retailer problem and, in a foundational paper, proposed an initial model making use of membrane computing modelling tools. In the present paper, we design a solution based on population dynamics P systems for an enriched version of that problem. This enhanced model, closer to reality, takes into account several economic issues not considered in the initial model, including: depreciation of production capacity, decision mechanism to increase manufacturing capability, dividends payment and costs associated to production factors. Additionally, the model has been simulated making use of the framework provided by P-Lingua and MeCoSim, and delivering a custom application based on them to reproduce the virtual experiments. Finally, several scenarios have been analysed focusing on different elements included in the model.
CITATION STYLE
Sánchez-Karhunen, E., & Valencia-Cabrera, L. (2019). Modelling complex market interactions using PDP systems. Journal of Membrane Computing, 1(1), 40–51. https://doi.org/10.1007/s41965-019-00008-z
Mendeley helps you to discover research relevant for your work.