Cadmium toxicity is one of the deleterious abiotic factors that reduce wheat production. Two different cultivars (Akbar and Dilkash) were compared for their cadmium (0, 40 and 80 mg/kg) tolerance and responses towards Bacillus subtilis NA2, Aspergillus niger PMI-118 and L-proline. Both microbes were tested for heavy metal tolerance and production of various plant hormones and biological active enzyme characteristics under normal and cadmium stress. A completely randomized design (two cultivars × four treatments × three cadmium levels × three replicates) was adopted using distilled water as a control. The growth promotion potential of these strains under cadmium stress was determined by N-fixation, IAA synthesis, P-solubilization, amylase and proteases production. A pot experiment under controlled conditions was conducted to evaluate the effect of bacteria, fungi, and L-proline under cadmium stress. It was indicated from the result that plant biomass (46.43%), shoot length (22.40%), root length (25.06%), chlorophyll (17.17%), total sugars (27.07%), total proteins (86.01%) and ascorbic acid (83.27%) were improved with inoculation under control and cadmium stress. The accumulation of total flavonoids (48.64%), total phenolics (24.88%), hydrogen peroxide (53.96%) and activities of antioxidant enzymes CAT (26.37%) and APX (43.71%) were reduced in the plants treated with bacteria, fungi and L-proline than those under control. With parallel aids, Bacillus subtilis NA2 showed a higher cadmium tolerance and plant growth stability as compared to Aspergillus niger PMI-118 and L-proline and may be adopted in the future.
CITATION STYLE
Bashir, S., Javed, S., Al-Anazi, K. M., Farah, M. A., & Ali, S. (2022). Bioremediation of Cadmium Toxicity in Wheat (Triticum aestivum L.) Plants Primed with L-Proline, Bacillus subtilis and Aspergillus niger. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912683
Mendeley helps you to discover research relevant for your work.