A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation

  • Sideraki V
  • Huang W
  • Palzkill T
  • et al.
N/ACitations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

In Gram-negative bacteria, TEM-1 β-lactamase provides the major mechanism of plasmid-mediated β-lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum β-lactam antibiotics (e.g., ceftazidime) and β-lactamase inhibitors (e.g., clavulanic acid). Some of the variant enzymes are more efficient at catalyzing β-lactam hydrolysis, whereas others are more resistant to inhibitors. M182T is a substitution observed in both types of variant TEM-1 β-lactamases. This mutation is found only in combination with other amino acid substitutions, suggesting that it may correct defects introduced by other mutations that alter the specificity. An engineered core mutation, L76N, which diminishes the periplasmic β-lactamase activity by 100-fold, was used as a model to understand the mechanism of suppression of the M182T mutation. Biochemical studies of the L76N enzyme alone and in combination with the M182T mutation indicate that the M182T substitution acts at the level of folding but does not affect the thermodynamic stability of TEM-1 β-lactamase. Thus, the M182T substitution is an example of a naturally occurring mutation that has evolved to alter the folding pathway of a protein and confer a selective advantage during the evolution of drug resistance.

Cite

CITATION STYLE

APA

Sideraki, V., Huang, W., Palzkill, T., & Gilbert, H. F. (2001). A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation. Proceedings of the National Academy of Sciences, 98(1), 283–288. https://doi.org/10.1073/pnas.98.1.283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free