Abstract
Environmental sound classification is an important branch of acoustic signal processing. In this work, a set of sound classification features based on audio signal perception and statistical analysis are proposed to describe the signal from multiple aspects of the time and frequency domain. Energy features, spectral entropy features, zero crossing rate (ZCR), and mel-frequency cepstral coefficient (MFCC) are combined to form joint signal analysis (JSA) features to improve the signal expression of the features. Then, based on the JSA, a novel region joint signal analysis feature (RJSA) for environment sound classification is also proposed. It can reduce feature extraction computation and improve feature stability, robustness, and classification accuracy. Finally, a sound classification framework based on the boosting ensemble learning method is provided to improve the classification accuracy and model generalization. The experimental results show that compared with the highest classification accuracy of the baseline algorithm, the environmental sound classification algorithm based on our proposed RJSA features and ensemble learning methods improves the classification accuracy, and the accuracy of the LightGBM-based sound classification algorithm improves by 14.6%.
Author supplied keywords
Cite
CITATION STYLE
Jin, W., Wang, X., & Zhan, Y. (2022). Environmental Sound Classification Algorithm Based on Region Joint Signal Analysis Feature and Boosting Ensemble Learning. Electronics (Switzerland), 11(22). https://doi.org/10.3390/electronics11223743
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.