Abstract
We aimed to develop and validate a multiparametric MR radiomics model using conventional, diffusion-, and perfusion-weighted MR imaging for better prognostication in patients with newly diagnosed glioblastoma. A total of 216 patients with newly diagnosed glioblastoma were enrolled from two tertiary medical centers and divided into training (n = 158) and external validation sets (n = 58). Radiomic features were extracted from contrast-enhanced T1-weighted imaging, fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast imaging. After radiomic feature selection using LASSO regression, an individualized radiomic score was calculated. A multiparametric MR prognostic model was built using the radiomic score and clinical predictors. The results showed that the multiparametric MR prognostic model (radiomics score + clinical predictors) exhibited good discrimination (C-index, 0.74) and performed better than a conventional MR radiomics model (C-index, 0.65, P < 0.0001) or clinical predictors (C-index, 0.66; P < 0.0001). The multiparametric MR prognostic model also showed robustness in external validation (C-index, 0.70). Our results indicate that the incorporation of diffusion- and perfusion-weighted MR imaging into an MR radiomics model to improve prognostication in glioblastoma patients improved its performance over that achievable using clinical predictors alone.
Cite
CITATION STYLE
Park, J. E., Kim, H. S., Jo, Y., Yoo, R. E., Choi, S. H., Nam, S. J., & Kim, J. H. (2020). Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61178-w
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.