Attempts to convert the cellular prion protein into the scrapie isoform in cell-free systems

  • Raeber A
  • Borchelt D
  • Scott M
  • et al.
34Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The scrapie prion protein (PrPSc) is derived from a cellular isoform (PrPC) that acquires protease resistance posttranslationally. We have used several different experimental approaches in attempts to reconstitute in vitro the processes leading to protease-resistant PrPSc molecules. In the first study, we performed mixing experiments by adding mouse PrP 27-30 (MoPrP27-30), the protease-resistant core of PrPSc, to PrPC and then incubating the mixture to investigate the possibility of heterodimer formation as a first step in prion replication. We used epitopically tagged PrP molecules, synthesized in murine neuroblastoma (N2a) cells transfected with the chimeric mouse/Syrian hamster MHM2 PrP construct, which are recognized by the Syrian hamster-specific monoclonal antibody 3F4. After as long as 24 h of incubation, the reaction mixture was assayed for heterodimeric intermediates of MHM2 PrPC and MoPrPSc and for protease-resistant 3F4-reactive PrP. We were unable to identify any aggregates of MHM2 PrPC and MoPrPSc on immunoblots; furthermore, we did not observe de novo formation of protease-resistant MHM2 PrP. In a second study, MoPrPC was metabolically radiolabeled in scrapie prion-infected N2a cultured cells, and then the cell extract was homogenized and incubated under various conditions to allow for the formation of protease-resistant MoPrPSc. We observed no radiolabeled MoPrPSc by immunoprecipitation after as long as 24 h of in vitro incubation. In a third approach, Syrian hamster PrP (SHaPrP) was synthesized in a cell-free translation system supplemented with microsomal membranes derived from either normal or scrapie prion-infected cultured cells. We found that all SHaPrP species translocated across microsomal membranes from scrapie prion-infected cells were protease sensitive in the presence of detergents and displayed the same topology as those generated by microsomes from normal cells or from dog pancreas. We also studied PrP molecules that encode the codon 102 mutation that causes the rare human prion disease Gerstmann-Sträussler-Scheinker (GSS) syndrome. On the basis of our data, GSSPrP appears to yield topological forms similar to those of the wild-type PrP when processed by either normal or scrapie prion-derived microsomes.

Cite

CITATION STYLE

APA

Raeber, A. J., Borchelt, D. R., Scott, M., & Prusiner, S. B. (1992). Attempts to convert the cellular prion protein into the scrapie isoform in cell-free systems. Journal of Virology, 66(10), 6155–6163. https://doi.org/10.1128/jvi.66.10.6155-6163.1992

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free