Water retention is an important factor in ecosystem services, owing to its relationships with climate and land-cover change; however, quantifying the independent and combined impacts of these variables remains a challenge. We use scenario analysis and the InVEST model to assess individual or combined impacts of climate and land cover on water retention in the Upper Yangtze River Basin. Water retention decreased from 1986 to 2015 at a rate of 2.97 mm/10a in response to increasing precipitation (3.94 mm/10a) and potential evapotranspiration (16.47 mm/10a). The rate of water retention change showed regional variability (from 68 to -18 mm/a), with some eastern regions experiencing an increase and most other regions experiencing a decrease. Farmland showed the highest decrease (10,772 km2), with land mainly converted into forest (58.17%) and shrub land (21.13%) from 2000 to 2015. The impact of climate change (-12.02 mm) on water retention generally was greater than the impact of land cover change (-4.14 mm), at the basin scale. Among 22 climate zones, 77.27% primarily were impacted by climate change; 22.73% primarily were impacted by land cover change. Our results demonstrate that both individualistic and integrated approaches toward climate and vegetation management is necessary to mitigate the impacts of climate change on water resources.
CITATION STYLE
Xu, P., Guo, Y., & Fu, B. (2019). Regional impacts of climate and land cover on ecosystemwater retention services in the Upper Yangtze River Basin. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195300
Mendeley helps you to discover research relevant for your work.