This study aimed to assess the performance of three zeolite membranes in the removal of trivalent metal ions from aqueous solution using a cross-flow mode of operation. Three types of zeolite membrane, MCM-41, MCM-48 and FAU, were prepared on a low-cost, circular ceramic support by hydrothermal treatment. The three zeolite membranes were characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and contact angle measurements. The XRD results confirmed the formation of zeolites. The deposition of zeolite on the ceramic support and hydrophilicity of zeolite membranes were monitored by FESEM and contact angle measurement, respectively. The pore size of the MCM-41, MCM-48 and FAU membrane was found to be 0.173 μm, 0.142 μm, and 0.153 μm, respectively, which was lower than that of the support (1.0 μm). The fabricated zeolite membranes were used to investigate the separation behavior of trivalent metal ions (Al3þ and Fe3þ) from aqueous solution at various applied pressures. It was observed that an increase of applied pressure leads to a slight decrease in the removal efficiency. Among the various zeolite membranes, the FAU membrane showed the maximum rejection of 88% and 83% for Fe3þ and Al3þ separation, respectively.
CITATION STYLE
Basumatary, A. K., Kumar, R. V., Pakshirajan, K., & Pugazhenthi, G. (2017). Removal of trivalent metal ions from aqueous solution via cross-flow ultrafiltration system using zeolite membranes. Journal of Water Reuse and Desalination, 7(1), 66–76. https://doi.org/10.2166/wrd.2016.211
Mendeley helps you to discover research relevant for your work.