Joint mouse-human phenome-wide association to test gene function and disease risk

117Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for ∼5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of ∼4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets - by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human.

Cite

CITATION STYLE

APA

Wang, X., Pandey, A. K., Mulligan, M. K., Williams, E. G., Mozhui, K., Li, Z., … Williams, R. W. (2016). Joint mouse-human phenome-wide association to test gene function and disease risk. Nature Communications, 7. https://doi.org/10.1038/ncomms10464

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free