GLS-409, an Antagonist of Both P2Y1 and P2Y12, Potently Inhibits Canine Coronary Artery Thrombosis and Reversibly Inhibits Human Platelet Activation

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dual antiplatelet therapy with aspirin and an adenosine diphosphate (ADP) P2Y12 receptor antagonist reduces ischemic events in patients with acute coronary syndrome. Previous evidence from our group, obtained in a preclinical model of recurrent platelet-mediated thrombosis, demonstrated that GLS-409, a diadenosine tetraphosphate derivative that inhibits both P2Y1 and P2Y12 ADP receptors, may be a novel and promising antiplatelet drug candidate. However, the salutary antiplatelet effects of GLS-409 were accompanied by a trend toward an unfavorable increase in bleeding. The goals of this study were to: 1) provide proof-of-concept that the efficacy of GLS-409 may be maintained at lower dose(s), not accompanied by an increased propensity to bleeding; and 2) establish the extent and kinetics of the reversibility of human platelet inhibition by the agent. Lower doses of GLS-409 were identified that inhibited in vivo recurrent coronary thrombosis with no increase in bleeding time. Human platelet inhibition by GLS-409 was reversible, with rapid recovery of platelet reactivity to ADP, as measured by platelet surface activated GPIIb-IIIa and platelet surface P-selectin. These data support the concept that GLS-409 warrants further, larger-scale investigation as a novel, potential therapy in acute coronary syndromes.

Cite

CITATION STYLE

APA

Koganov, E. S., Michelson, A. D., Yanachkov, I. B., Yanachkova, M. I., Wright, G. E., Przyklenk, K., & Frelinger, A. L. (2018). GLS-409, an Antagonist of Both P2Y1 and P2Y12, Potently Inhibits Canine Coronary Artery Thrombosis and Reversibly Inhibits Human Platelet Activation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32797-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free