Dual antiplatelet therapy with aspirin and an adenosine diphosphate (ADP) P2Y12 receptor antagonist reduces ischemic events in patients with acute coronary syndrome. Previous evidence from our group, obtained in a preclinical model of recurrent platelet-mediated thrombosis, demonstrated that GLS-409, a diadenosine tetraphosphate derivative that inhibits both P2Y1 and P2Y12 ADP receptors, may be a novel and promising antiplatelet drug candidate. However, the salutary antiplatelet effects of GLS-409 were accompanied by a trend toward an unfavorable increase in bleeding. The goals of this study were to: 1) provide proof-of-concept that the efficacy of GLS-409 may be maintained at lower dose(s), not accompanied by an increased propensity to bleeding; and 2) establish the extent and kinetics of the reversibility of human platelet inhibition by the agent. Lower doses of GLS-409 were identified that inhibited in vivo recurrent coronary thrombosis with no increase in bleeding time. Human platelet inhibition by GLS-409 was reversible, with rapid recovery of platelet reactivity to ADP, as measured by platelet surface activated GPIIb-IIIa and platelet surface P-selectin. These data support the concept that GLS-409 warrants further, larger-scale investigation as a novel, potential therapy in acute coronary syndromes.
CITATION STYLE
Koganov, E. S., Michelson, A. D., Yanachkov, I. B., Yanachkova, M. I., Wright, G. E., Przyklenk, K., & Frelinger, A. L. (2018). GLS-409, an Antagonist of Both P2Y1 and P2Y12, Potently Inhibits Canine Coronary Artery Thrombosis and Reversibly Inhibits Human Platelet Activation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32797-1
Mendeley helps you to discover research relevant for your work.