Unsaturated fluid flow through granular soils treated with microbial induced desaturation and precipitation

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The use of microorganisms to induce desaturation of granular soils via denitrification results in nitrogen and carbon dioxide gas generation, which in turn lowers the degree of saturation of the soil matrix. Given sufficient substrates, the stimulated bacteria will produce enough gas to develop a continuous gas phase. Introducing gas into the soil to reduce the degree of saturation is shown to increase the soil resistance to dynamic loading and helps to mitigate liquefaction. The impact of desaturation on liquefaction hazard mitigation has comparative value to the calcite precipitation phase of the process. Meso-scale tests have been performed on a relatively thin tank of soil to simulate planar flow through a granular soil treated with MIDP.

Cite

CITATION STYLE

APA

Young, E. G. S., Zapata, C. E., & Van Paassen, L. (2020). Unsaturated fluid flow through granular soils treated with microbial induced desaturation and precipitation. In E3S Web of Conferences (Vol. 195). EDP Sciences. https://doi.org/10.1051/e3sconf/202019505003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free