Highly variable and non-linear pharmacokinetics of voriconazole are mainly caused by CYP2C19 polymorphisms. This study aimed to develop a mechanistic population pharmacokinetic model including the CYP2C19 phenotype, and to assess the appropriateness of various dosing regimens based on the therapeutic target. A total of 1,828 concentrations from 193 subjects were included in the population pharmacokinetic analysis. A three-compartment model with an inhibition compartment appropriately described the voriconazole pharmacokinetics reflecting auto-inhibition. Voriconazole clearance in the CYP2C19 intermediate metabolizers (IMs) and poor metabolizers (PMs) decreased by 17% and 53% compared to that in the extensive metabolizers (EMs). There was a time-dependent inhibition of clearance to 16.2% of its original value in the CYP2C19 EMs, and the extent of inhibition differed according to the CYP2C19 phenotypes. The proposed CYP2C19 phenotype-guided initial dosing regimens are 400 mg twice daily (bid) for EMs, 200 mg bid for IMs, and 100 mg bid for PMs. This CYP2C19 phenotype-guided initial dosing regimen will provide a rationale for individualizing the optimal voriconazole therapy.
CITATION STYLE
Kim, Y., Rhee, S. J., Park, W. B., Yu, K. S., Jang, I. J., & Lee, S. H. (2019). A personalized CYP2C19 phenotype-guided dosing regimen of voriconazole using a population pharmacokinetic analysis. Journal of Clinical Medicine, 8(2). https://doi.org/10.3390/jcm8020227
Mendeley helps you to discover research relevant for your work.