Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8 T cells. The peptides are generated in the cytosol, then translocated across the membrane of the endoplasmic reticulum by the transporter associated with antigen processing (TAP). TAP is a trimeric complex consisting of TAP1, TAP2, and tapasin (TAP-A) as indicated for human cells by reciprocal coprecipitation with anti-TAP 1/2 and anti-tapasin antibodies, respectively. TAP1 and TAP2 are required for the peptide transport. Tapasin is involved in the association of class I with TAP and in the assembly of class I with peptide. The mechanisms of tapasin function are still unknown. Moreover, there has been no evidence for a murine tapasin analogue, which has led to the suggestion that murine MHC class I binds directly to TAP 1/2 . In this study, we have cloned the mouse analogue of tapasin. The predicted amino acid sequence showed 78% identity to human tapasin with identical consensus sequences of signal peptide, N-linked glycosylation site, transmembrane domain and double lysine motif. However, there was less homology (47%) found at the predicted cytosolic domain, and in addition, mouse tapasin is 14 amino acids longer than the human analogue at the C terminus. This part of the molecule may determine the species specificity for interaction with MHC class I or TAP 1/2 . Like human tapasin, mouse tapasin binds both to TAP 1/2 and MHC class I. In TAP2-mutated RMA-S cells, both TAP1 and MHC class I were coprecipitated by anti-tapasin antiserum indicative of association of tapasin with TAP1 but not TAP2. With crosslinker-modified peptides and purified microsomes, anti-tapasin coprecipitated both peptide-bound MHC class I and TAP 1/2 . In contrast, anti- calreticulin only coprecipitated peptide-free MHC class I molecules. This difference in association with peptide-loaded class I suggests that tapasin functions later than calreticulin during MHC class I assembly, and controls peptide loading onto MHC class I molecules in the endoplasmic reticulum.
Cite
CITATION STYLE
Li, S., Paulsson, K. M., Sjögren, H. O., & Wang, P. (1999). Peptide-bound major histocompatibility complex class I molecules associate with Tapasin before dissociation from transporter associated with antigen processing. Journal of Biological Chemistry, 274(13), 8649–8654. https://doi.org/10.1074/jbc.274.13.8649
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.