Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components

205Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Signal transducer and activator of transcription (STAT) proteins are normally long-lived, but infection with certain Paramyxoviruses results in efficient loss of IFN-responsive STAT1 or STAT2. Expression of a virus-encoded protein called "V" is sufficient to mediate the destruction of STAT proteins. STAT degradation is blocked by proteasome inhibitors, strongly implicating the ubiquitin (Ub)-proteasome targeting system. We demonstrate that cellular expression of V proteins from simian virus 5 (SV5) and type II human parainfluenza virus (HPIV2) induces polyubiquitylation of STAT1 and STAT2 targets. In vitro, the V proteins catalyze Ub transfer in an ATP-dependent process that requires both Ub-activating (E1) and Ub-conjugating (E2) activities. Furthermore, SV5 and HPIV2 V-interacting protein partners were isolated by affinity purification from human cells and reveal a complex of associated cellular proteins. This complex includes both STAT1 and STAT2, and the damaged DNA binding protein, DDB1. In addition, a protein related to a family of cellular Ub ligase complex subunits, cullin 4A (Cul4A), associated with the V proteins. The roles of both DDB1 and Cul4A in STAT1 degradation by SV5 infection were analyzed using small interfering RNAs. These findings demonstrate the assembly of a V-dependent degradation complex that includes STAT1, STAT2, DDB1, and Cul4A. In agreement with prior nomenclature on SCF-type cellular E3 enzymes, we refer to this complex as VDC. © 2002 Elsevier Science (USA).

Cite

CITATION STYLE

APA

Ulane, C. M., & Horvath, C. M. (2002). Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology, 304(2), 160–166. https://doi.org/10.1006/viro.2002.1773

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free