AdaptNet: Policy Adaptation for Physics-Based Character Control

19Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at https://motion-lab.github.io/AdaptNet.

Cite

CITATION STYLE

APA

Xu, P., Xie, K., Andrews, S., Kry, P. G., Neff, M., McGuire, M., … Zordan, V. (2023). AdaptNet: Policy Adaptation for Physics-Based Character Control. ACM Transactions on Graphics, 42(6). https://doi.org/10.1145/3618375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free