Life cycle assessment (LCA) studies of desktop personal computers (PCs) are analyzed to assess the environmental impact of PCs and to explain inconsistencies and disagreements across existing studies. Impacts, characterized in this work in terms of primary energy demand and global warming potential, are decomposed into inventory components and impact per component in order to expose such inconsistencies. Additional information from related studies, especially regarding use-phase energy consumption, helps interpret the LCA results. The weight of evidence strongly suggests that for primary energy demand and contribution to climate change, the use phase is the dominant life cycle phase; manufacturing impacts are smaller but substantial, and impacts due to product transportation and end-of-life activities are much smaller. Each of the few LCA studies that report manufacturing impacts as being greater than use-phase impacts make unrealistically low assumptions regarding use-phase energy consumption. Estimates of manufacturing impacts, especially those related to printed circuit boards and integrated circuits, are highly uncertain and variable; such estimates are very difficult to evaluate, and more systematic research is needed to reduce these uncertainties. The type of computer analyzed, such as low-power light desktop or high-power workstation, may dominate the total impact; future studies should therefore base their estimates on a large sample to smooth out this variation, or explicitly restrict the analysis to a specific type of computer. © 2012 by Yale University.
CITATION STYLE
Teehan, P., & Kandlikar, M. (2012). Sources of Variation in Life Cycle Assessments of Desktop Computers. Journal of Industrial Ecology, 16(SUPPL.1). https://doi.org/10.1111/j.1530-9290.2011.00431.x
Mendeley helps you to discover research relevant for your work.