Abstract
Prostaglandin E2 (PGE2) production involves the activity of a multistep biosynthetic pathway. The terminal components of this cascade, two PGE2 synthases (PGES), have very recently been identified as glutathione-dependent proteins. cPGES is cytoplasmic, apparently identical to the hsp90 chaperone, p23, and associates functionally with prostaglandin-endoperoxide H synthase-1 (PGHS-1), the constitutive cyclooxygenase. A second synthase, designated mPGES, is microsomal and can be regulated. Here we demonstrate that mPGES and PGHS-2 are expressed at very low levels in untreated human orbital fibroblasts. Interleukin (IL)-1β treatment elicits high levels of PGHS-2 and mPGES expression. The induction of both enzymes occurs at the pretranslational level, is the consequence of enhanced gene promoter activities, and can be blocked by dexamethasone (10 nM). SC58125, a PGHS-2-selective inhibitor, could attenuate the induction of mPGES, suggesting a dependence of this enzyme on PGHS-2 activity. IL-1β treatment activates p38 and ERK mitogen-activated protein kinases. Induction of both mPGES and PGHS-2 was susceptible to either chemical inhibition or molecular interruption of these pathways with dominant negative constructs. These results indicate that the induction of PGHS-2 and mPGES by IL-1β underlies robust PGE2 production in orbital fibroblasts.
Cite
CITATION STYLE
Han, R., Tsui, S., & Smith, T. J. (2002). Up-regulation of prostaglandin E2 synthesis by interleukin-1β in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. Journal of Biological Chemistry, 277(19), 16355–16364. https://doi.org/10.1074/jbc.M111246200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.