Abstract
Tumor heterogeneity is a limiting factor in Ag-specific vaccination. Ag-negative variants may arise after tumor cells bearing the immunizing Ags are destroyed. In situ priming to tumor-associated epitopes distinct from and not cross-reactive with the immunizing Ags may be crucial to the ultimate success of cancer vaccination. Immunization of BALB/c mice with DNA encoding wild-type human ErbB-2 (Her-2/neu, E2) or cytoplasmic ErbB-2 (cytE2), activated primarily CD4 or CD8 T cells, respectively, and both vaccines protected against ErbB-2-positive D2F2/E2 tumors. In ≥50% of protected mice, a second challenge of ErbB-2-negative D2F2 tumor cells was rejected. Recognition of non-ErbB-2, tumor-associated Ags was demonstrated by immune cell proliferation upon stimulation with irradiated D2F2 cells. This broadening of epitope recognition was abolished if CD4 T cells were depleted before D2F2/E2 tumor challenge, demonstrating their critical role in Ag priming. Similarly, mice that rejected D2F2/cytE2 tumor cells, which express only MHC I epitopes of ErbB-2, were not protected from a second challenge with D2F2 cells. Depletion of CD8 T cells abolished protection against D2F2, indicating the activation of D2F2-specific CTL. Therefore, long term protection may be achieved by immunization with dominant Ag(s), followed by a general enhancement of CD4 T cell activity to promote priming to multiple tumor-associated Ags.
Cite
CITATION STYLE
Pilon, S. A., Kelly, C., & Wei, W.-Z. (2003). Broadening of Epitope Recognition During Immune Rejection of ErbB-2-Positive Tumor Prevents Growth of ErbB-2-Negative Tumor. The Journal of Immunology, 170(3), 1202–1208. https://doi.org/10.4049/jimmunol.170.3.1202
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.