Background: Current syphilis diagnostic strategies are lacking a sensitive manner of directly detecting Treponema pallidum antigens. A diagnostic test that could directly detect T. pallidum antigens in individuals with syphilis would be of considerable clinical utility, especially for the diagnosis of reinfections and for post-treatment serological follow-up. Methods: In this study, 11 candidate T. pallidum biomarker proteins were chosen according to their physiochemical characteristics, T. pallidum specificity and predicted abundance. Thirty isotopically labelled proteotypic surrogate peptides (hPTPs) were synthesized and incorporated into a scheduled multiple reaction monitoring assay. Protein extracts from undepleted/unenriched plasma (N = 18) and urine (N = 4) samples from 18 individuals with syphilis in various clinical stages were tryptically digested, spiked with the hPTP mixture and analysed with a triple quadruple mass spectrometer. Results: No endogenous PTPs corresponding to the eleven candidate biomarkers were detected in any samples analysed. To estimate the Limit of Detection (LOD) of a comparably sensitive mass spectrometer (LTQ-Orbitrap), two dilution series of rabbit cultured purified T. pallidum were prepared in PBS. Polyclonal anti- T. pallidum antibodies coupled to magnetic Dynabeads were used to enrich one sample series; no LOD improvement was found compared to the unenriched series. The estimated LOD of MS instruments is 300 T. pallidum /ml in PBS. Conclusions: Biomarker protein detection likely failed due to the low (femtomoles/liter) predicted concentration of T. pallidum proteins. Alternative sample preparation strategies may improve the detectability of T. pallidum proteins in biofluids.
CITATION STYLE
Van Raemdonck, G. A., Osbak, K. K., Van Ostade, X., & Kenyon, C. R. (2018). Needle lost in the haystack: multiple reaction monitoring fails to detect Treponema pallidum candidate protein biomarkers in plasma and urine samples from individuals with syphilis. F1000Research, 7, 336. https://doi.org/10.12688/f1000research.13964.1
Mendeley helps you to discover research relevant for your work.