This paper introduces a three layered approach built on robust microsimulation modelling to evaluate the benefits of integrated traffic management (ITM), when combining a MOVA (Microprocessor Optimised Vehicle Actuation) signal with Ramp metering (RM) and access management. The modelling uses additional controller parameters to simulate the coordination of two or more MOVA signal control systems over a relatively simple linkage, by providing an off-set. A case study has been chosen in a motorway environment by using actual data in Birmingham (UK) in response to development pressures. The results were audited through the Highways Agency procedures, were accepted and permission was granted. Signal technologies and advanced microsimulation modelling techniques have been used to manage access at the motorway interface to the local road network. Visual vehicle activated programming in VIS SIM (VISVAP) programming techniques have been used to emulate the MOVA traffic signals, RM and the access management. The results show a significant operational benefit. The model predicted that the throughput of the mainline would increase by 9% and the overall average delay per vehicle would reduce by 37%, with the average speeds predicted to increase by 38% following the implementation of the ITM Strategy. A significant reduction in the total stopped time delay of 40.7% is also achieved thereby reducing the flow breakdowns.
CITATION STYLE
Tenekeci, G., Hansen, N., Wainaina, S., & Mohammad, A. (2014). Integrated traffic management: Benefit analysis of three layered approach. IET Intelligent Transport Systems, 8(8), 665–680. https://doi.org/10.1049/iet-its.2013.0016
Mendeley helps you to discover research relevant for your work.