Many circRNAs are involved in the carcinogenesis of breast cancer (BCa) through the transcription of microRNAs (miRNAs) and mRNAs. This study investigated circRBM33 regulation of the miR-542-3p/hypoxia-inducible factor-1α (HIF-1α) axis in BCa. BCa clinical tissue samples were collected to test differential expressions of circRBM33, miR-542-3p, and HIF-1α. MCF-7 cells were subjected to normoxia or hypoxia and transfected with plasmids that regulated CircRBM33, miR-542-3p, and HIF-1α expression levels. Glycolysis was evaluated by measuring glucose consumption, lactic acid production, and protein expression of hexokinase 2, glucose transporter type 1 and lactic dehydrogenase A. Cell proliferation and apoptosis were also assessed, and the interactions between genes were explored. CircRBM33 and HIF-1α were upregulated, while miR-542-3p was downregulated in BCa tissue samples and cell lines. Hypoxia induced circRBM33 expression in BCa cells, which negatively regulated miR-542-3p expression. CircRBM33 knockdown or miR-542-3p rescue reduced glycolysis and proliferation and promoted apoptosis of BCa cells. MiR-542-3p inhibition rescued circRBM33 knockdown-mediated glycolysis, proliferation and apoptosis of BCa cells. MiR-542-3p targeted HIF-1α, and the overexpression of HIF-1α reversed the effect of miR-542-3p upregulation on glycolysis, proliferation, and apoptosis of BCa cells. Collectively, downregulating circRBM33 suppresses miR-542-3p-targeted HIF-1α expression, resulting in the inhibition of glycolysis and proliferation and the promotion of BCa cells’ apoptosis.
CITATION STYLE
Jiang, Y., Zhang, M., Yu, D., Hou, G., Wu, J., & Li, F. (2022). CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis. Cell Death Discovery, 8(1). https://doi.org/10.1038/s41420-022-00860-6
Mendeley helps you to discover research relevant for your work.