Polyphenylsilsesquioxane (PhSiO3/2) particles as an organic-inorganic hybrid were prepared using sol-gel method, and monolithic samples were obtained via a warm-pressing. The reaction mechanism of particles' polymerization and transformation to the monolith under the warm-press were investigated using solid state 29Si nuclear magnetic resonance (NMR) spectrometer, thermal gravimetric-differential thermal analyzer (TG-DTA), mass spectrometer (MS) and scanning electron microscope (SEM). Transparent and void-free monoliths are successfully obtained by warm-pressing above 180 °C. Both the terminal -OH groups on particles' surface and warm-pressing are necessary for preparation of void-free PhSiO3/2 monolith. From the load-displacement measurement at various temperatures, a viscoelastic deformation is seen for PhSiO3/2 monolith with voids. On the other hand, an elastic deformation is seen for void-free PhSiO3/2 monolith, and the void-free monolith shows much higher breakdown voltage.
CITATION STYLE
Daiko, Y., Oda, Y., Honda, S., & Iwamoto, Y. (2018). Void formation/elimination and viscoelastic response of polyphenylsilsesquioxane monolith. Materials, 11(5). https://doi.org/10.3390/ma11050846
Mendeley helps you to discover research relevant for your work.