Abstract
We demonstrate a cryogenic optomechanical system comprising a flexible Si3N4 membrane placed at the center of a free-space optical cavity in a 400 mK cryogenic environment. We observe a mechanical quality factor Q > 4 × 106 for the 261 kHz fundamental drum-head mode of the membrane, and a cavity resonance halfwidth of 60 kHz. The optomechanical system therefore operates in the resolved sideband limit. We monitor the membrane's thermal motion using a heterodyne optical circuit capable of simultaneously measuring both of the mechanical sidebands, and find that the observed optical spring and damping quantitatively agree with theory. The mechanical sidebands exhibit a Fano lineshape, and to explain this we develop a theory describing heterodyne measurements in the presence of correlated classical laser noise. Finally, we discuss the use of a passive filter cavity to remove classical laser noise, and consider the future requirements for laser cooling this relatively large and low-frequency mechanical element to very near its quantum mechanical ground state. © IOP Publishing and Deutsche Physikalische Gesellschaft.
Cite
CITATION STYLE
Jayich, A. M., Sankey, J. C., Borkje, K., Lee, D., Yang, C., Underwood, M., … Harris, J. G. E. (2012). Cryogenic optomechanics with a Si3N4 membrane and classical laser noise. New Journal of Physics, 14. https://doi.org/10.1088/1367-2630/14/11/115018
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.