Abstract
Purpose: To evaluate the effects of 5 manufacturing technologies and 2 finish line designs on the trueness and dimensional stability of 3D-printed definitive dies at finish line regions under different storage conditions and time. Material and methods: Preparation of light chamfer and round shoulder finish lines were adopted individually on two mandibular first molar typodont teeth and digitalized as standard tessellation language (STL) files. A total of 240 samples (192 AM definitive dies and 48 definitive conventional stone dies) in 20 groups (n = 12) were manufactured based on 2 finishing line designs (chamfer and shoulder), 5 manufacturing technologies (4 additively manufactured technologies and conventional stone die), and 2 storage conditions (light exposure and dark). The 4 additively manufactured (AM) technologies include a DLP 3D-printer, an economic LED 3D-printer, a CLIP 3D-printer, and an SLA 3D-printer. All the study samples were distributed into two storage conditions. Subsequently, samples were digitalized to STL files at 3 different time points (within 36 hours, 1-month, and 3-months). A surface matching software was used to superimpose the sample STL files onto the corresponding original STL files with the best-fit alignment function. The trueness of each printed and stone definitive dies and their dimensional stabilities were measured by the root mean square (RMS, in mm). A linear mixed-effects model was used to test the effects of the finish line design, manufacturing technology, storage condition, and storage time on RMS values (α = 0.05). Results: While finish line designs had no significant effects [F(1, 220) = 0.85, p < 0.358], the manufacturing technologies [F(3, 220) = 33.02, p < 0.001], storage condition [F(1, 220) = 4.11, p = 0.044], and storage time F(2, 440) = 10.37, p < 0.001] affected the trueness and dimensional stability of 3D-printed dies at finish line regions. No significant interactions were found among the 4 factors. For the manufacturing technologies, Type IV stone groups and LCD 3D-printer groups had significantly higher RMS values than the other 3 printers (p < 0.001) with no significant differences between Type IV stone and LCD 3D-printer groups (p = 0.577). DLP 3D-printer groups had higher RMS values than both SLA 3D-printer groups and CLIP 3D-printer groups (p < 0.001). There were no significant differences between SLA 3D-printer groups and CLIP 3D-printer groups, p = 0.671. For the effects of storage conditions, RMS values were significantly higher in the groups stored with the direct light exposure than the ones stored in the dark, p = 0.044. In terms of the effects of storage time, the RMS values were significantly higher after 1-month storage, p = 0.002; and 3-month storage, p < 0.001, than the ones at the immediate postmanufacturing stage. However, the RMS values after 1-month and 3-month storage were not significantly different from each other (p = 0.169). Conclusions: Manufacturing technologies, storage conditions, and storage time significantly affected the trueness and dimensional stability of 3D-printed dies at finish line regions, while finish line designs had no significant effects. Among the AM technologies tested, all have produced either comparable or truer 3D-printed dies than the Type IV dental stone dies, and the CLIP and SLA 3D-printers produced the best outcomes. 3D-printed dies showed significant distortion after 1-month and 3-months storage, especially under light exposure storage conditions. These findings may negate the clinical need to preserve 3D-printed dies, and digital data should be preserved instead.
Author supplied keywords
Cite
CITATION STYLE
Lai, Y. C., Yang, C. C., Levon, J. A., Chu, T. M. G., Morton, D., & Lin, W. S. (2023). The effects of additive manufacturing technologies and finish line designs on the trueness and dimensional stability of 3D-printed dies. Journal of Prosthodontics, 32(6), 519–526. https://doi.org/10.1111/jopr.13588
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.