Perusall: University learning-teaching innovation employing social annotation and machine learning

19Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

This paper presents the learning-teaching innovation process of a University course. The traditional elements of the teaching-learning process (lecture, study, exam) involving students in ongoing activities have changed. The paper focuses on the learning changes introduced by social annotation activities carried out through the Perusall web environment. In particular, Perusall functionalities that assess students’ participation were examined. These rely on multiple indicators set by the teacher, and a Machine Learning algorithm, which assesses the quality of annotations. A study was carried out to examine the validity of this process by analysing the relationship between Perusall algorithm’s scores and teacher’s scores, and how students perceive the automated scoring. The relationship was investigated through the Spearman correlation coefficient and Kendall’s coefficient of concordance. Thematic analysis was used to analyse the qualitative data concerning students’ perceptions. The results indicate that the Perusall algorithm provided scores quite similar to those of the teacher, and that students positively perceived the automated scoring.

Cite

CITATION STYLE

APA

Cecchinato, G., & Foschi, L. C. (2021). Perusall: University learning-teaching innovation employing social annotation and machine learning. Qwerty, 15(2), 45–67. https://doi.org/10.30557/QW000030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free