Genetic architecture of adaptive radiation across two trophic levels

4Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Evolution of trophic diversity is a hallmark of adaptive radiation. Yet, transitions between carnivory and herbivory are rare in young adaptive radiations. Haplochromine cichlid fish of the African Great Lakes are exceptional in this regard. Lake Victoria was colonized by an insectivorous generalist and in less than 20 000 years, several clades of specialized herbivores evolved. Carnivorous versus herbivorous lifestyles in cichlids require many different adaptations in functional morphology, physiology and behaviour. Ecological transitions in either direction thus require many traits to change in a concerted fashion, which could be facilitated if genomic regions underlying these traits were physically linked or pleiotropic. However, linkage/pleiotropy could also constrain evolvability. To investigate components of the genetic architecture of a suite of traits that distinguish invertivores from algae scrapers, we performed quantitative trait locus (QTL) mapping using a second-generation hybrid cross. While we found indications of linkage/pleiotropy within trait complexes, QTLs for distinct traits were distributed across several unlinked genomic regions. Thus, a mixture of independently segregating variation and some pleiotropy may underpin the rapid trophic transitions. We argue that the emergence and maintenance of associations between the different genomic regions underpinning co-adapted traits that evolved and persist against some gene flow required reproductive isolation.

Cite

CITATION STYLE

APA

Feller, A. F., & Seehausen, O. (2022). Genetic architecture of adaptive radiation across two trophic levels. Proceedings of the Royal Society B: Biological Sciences, 289(1974). https://doi.org/10.1098/rspb.2022.0377

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free