Fabricating a PDA-Liposome Dual-Film Coated Hollow Mesoporous Silica Nanoplatform for Chemo-Photothermal Synergistic Antitumor Therapy

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX), which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic light scattering (DLS), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectrometry (FT-IR), and small-angle X-ray scattering (SAXS) were used to show the successful fabrication of the nanocarrier. Simultaneously, in vitro drug release experiments showed the pH/NIR-laser-triggered DOX release profiles, which could enhance the synergistic therapeutic anticancer effect. Hemolysis tests, non-specific protein adsorption tests, and in vivo pharmacokinetics studies exhibited that the HMSNs-PDA@liposome-TPGS had a prolonged blood circulation time and greater hemocompatibility compared with HMSNs-PDA. Cellular uptake experiments demonstrated that HMSNs-PDA@liposome-TPGS had a high cellular uptake efficiency. In vitro and in vivo antitumor efficiency evaluations showed that the HMSNs-PDA@liposome-TPGS + NIR group had a desirable inhibitory activity on tumor growth. In conclusion, HMSNs-PDA@liposome-TPGS successfully achieved the synergistic combination of chemotherapy and photothermal therapy, and is expected to become one of the candidates for the combination of photothermal therapy and chemotherapy antitumor strategies.

Cite

CITATION STYLE

APA

Fan, C., Wang, X., Wang, Y., Xi, Z., Wang, Y., Zhu, S., … Xu, L. (2023). Fabricating a PDA-Liposome Dual-Film Coated Hollow Mesoporous Silica Nanoplatform for Chemo-Photothermal Synergistic Antitumor Therapy. Pharmaceutics, 15(4). https://doi.org/10.3390/pharmaceutics15041128

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free