An artificial neural network technique for downscaling GCM outputs to RCM spatial scale

27Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

An Artificial Neural Network (ANN) approach is used to downscale ECHAM5 GCM temperature (iT/i) and rainfall (iR/i) fields to RegCM3 regional model scale over Europe. The main inputs to the neural network were the ECHAM5 fields and topography, and RegCM3 topography. An ANN trained for the period 1960-1980 was able to recreate the RegCM3 1981-2000 mean iT/i and iR/i fields with reasonable accuracy. The ANN showed an improvement over a simple lapse-rate correction method for iT/i, although the ANN iR/i field did not capture all the fine-scale detail of the RCM field. An ANN trained over a smaller area of Southern Europe was able to capture this detail with more precision. The ANN was unable to accurately recreate the RCM climate change (CC) signal between 1981-2000 and 2081-2100, and it is suggested that this is because the relationship between the GCM fields, RCM fields and topography is not constant with time and changing climate. An ANN trained with three ten-year "time-slices" was able to better reproduce the RCM CC signal, particularly for the full European domain. This approach shows encouraging results but will need further refinement before becoming a viable supplement to dynamical regional climate modelling of temperature and rainfall. © Author(s) 2011. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Chadwick, R., Coppola, E., & Giorgi, F. (2011). An artificial neural network technique for downscaling GCM outputs to RCM spatial scale. Nonlinear Processes in Geophysics, 18(6), 1013–1028. https://doi.org/10.5194/npg-18-1013-2011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free