Generation of Nano-Bubbles by NaHCO3 for Improving the FO Membrane Performance

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Thin-film composite (TFC) polyamide membranes have a wide range of applications in forward osmosis, but tuning the water flux remains a significant challenge due to concentration polarization. The generation of nano-sized voids within the polyamide rejection layer can change the roughness of the membrane. In this experiment, the micro-nano structure of the PA rejection layer was adjusted by adding sodium bicarbonate to the aqueous phase to generate nano-bubbles, and the changes of its roughness with the addition of sodium bicarbonate were systematically demonstrated. With the enhanced nano-bubbles, more and more blade-like and band-like features appeared on the PA layer, which could effectively reduce the reverse solute flux of the PA layer and improve the salt rejection of the FO membrane. The increase in roughness raised the area of the membrane surface, which led to a larger area for concentration polarization and reduced the water flux. This experiment demonstrated the variation of roughness and water flux, providing an effective idea for the preparation of high-performance FO membranes.

Cite

CITATION STYLE

APA

Zhou, S., Zhou, Y., He, J., Lai, Y., Li, Y., Yan, W., … Gao, C. (2023). Generation of Nano-Bubbles by NaHCO3 for Improving the FO Membrane Performance. Membranes, 13(4). https://doi.org/10.3390/membranes13040404

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free